Showing 61 - 80 results of 127 for search '(( python tool implementing ) OR ( python time implementation ))', query time: 0.25s Refine Results
  1. 61

    High-Throughput Mass Spectral Library Searching of Small Molecules in R with NIST MSPepSearch by Andrey Samokhin (20282728)

    Published 2025
    “…High-level programming languages such as Python and R are widely used in mass spectrometry data processing, where library searching is a standard step. …”
  2. 62
  3. 63

    Genosophus: A Dynamical-Systems Diagnostic Engine for Neural Representation Analysis by Alan Glanz (22109698)

    Published 2025
    “…</b><code><strong>GenosophusV2.py</strong></code></h3><p dir="ltr">Executable Python implementation of the Genosophus Engine.</p><h3><b>2. …”
  4. 64

    Performance Benchmark: SBMLNetwork vs. SBMLDiagrams Auto-layout. by Adel Heydarabadipour (22290905)

    Published 2025
    “…<p>Log–log plot of median wall-clock time for SBMLNetwork’s C++-based auto-layout engine (blue circles, solid fit) and SBMLDiagrams’ implementation of the pure-Python NetworkX spring_layout algorithm (red squares, dashed fit), applied to synthetic SBML models containing 20–2,000 species, with a fixed 4:1 species-to-reaction ratio. …”
  5. 65

    Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2) by Tahir Bhatti (20961974)

    Published 2025
    “…The pipeline integrates established open-source tools (fastp, BWA-MEM, samtools, iVar, bcftools) and implements <b>codon-aware mutation calling</b> at five canonical RBD positions (R346, S371, K444, F456, F486) relative to NC_045512.2. …”
  6. 66

    Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series by Andrew M. Thomas (712104)

    Published 2025
    “…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
  7. 67

    MCCN Case Study 3 - Select optimal survey locality by Donald Hobern (21435904)

    Published 2025
    “…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
  8. 68

    Summary of Tourism Dataset. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  9. 69

    Segment-wise Spending Analysis. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  10. 70

    Hyperparameter Parameter Setting. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  11. 71

    Marketing Campaign Analysis. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  12. 72

    Visitor Segmentation Validation Accuracy. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  13. 73

    Integration of VAE and RNN Architecture. by Jing Zhang (23775)

    Published 2025
    “…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
  14. 74

    Comparison data 7 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  15. 75

    Sample data for <i>Neolamprologus multifasciatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  16. 76

    Sample data for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  17. 77

    Comparison data 3 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  18. 78

    Sample data for <i>Telmatochromis temporalis</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  19. 79

    Comparison data 4 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  20. 80

    Comparison data 1 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”