Search alternatives:
effective implementation » effective prevention (Expand Search)
world implementation » policy implementation (Expand Search), _ implementation (Expand Search)
python effective » proven effective (Expand Search), 1_the effective (Expand Search), 2_the effective (Expand Search)
python world » python tool (Expand Search)
effective implementation » effective prevention (Expand Search)
world implementation » policy implementation (Expand Search), _ implementation (Expand Search)
python effective » proven effective (Expand Search), 1_the effective (Expand Search), 2_the effective (Expand Search)
python world » python tool (Expand Search)
-
61
Mapping Policy Coherence in National UK Food Systems (2008– 2024): Analysing the Integration of Climate Change Mitigation and Adaptation Strategies, LEAP 2025 conference, Oxford
Published 2025“…</p><p dir="ltr">Data Screening inclusion criteria followed the Food Systems Countdown Initiative (FSCI).2</p><p><br></p><p dir="ltr">diets, nutrition and health</p><p dir="ltr">diet quality, food security, food environments, policies affecting</p><p dir="ltr">food environments</p><p dir="ltr">environment and climate</p><p dir="ltr">land use, greenhouse gas emissions, water use, pollution, biosphere integrity</p><p dir="ltr">livelihoods, poverty, and equity</p><p dir="ltr">poverty and income, employment, social protection, rights</p><p dir="ltr">governance</p><p dir="ltr">shared vision, strategic planning and policies, effective implementation, accountability</p><p dir="ltr">resilience and sustainability</p><p dir="ltr">exposure to shocks, resilience capacities, agrobiodiversity, food security stability</p><p><br></p><p dir="ltr">Findings</p><p dir="ltr">o N=157 policy documents integrate climate change considerations.…”
-
62
Data Sheet 1_COCαDA - a fast and scalable algorithm for interatomic contact detection in proteins using Cα distance matrices.pdf
Published 2025“…Here, we introduce COCαDA (COntact search pruning by Cα Distance Analysis), a Python-based command-line tool for improving search pruning in large-scale interatomic protein contact analysis using alpha-carbon (Cα) distance matrices. …”
-
63
Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds
Published 2025“…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …”
-
64
Research Database
Published 2025“…Data were processed using <b>Python-based automation scripts</b> for scraping, cleaning, geocoding, and calculating geodesic distances between each property and the nearest community garden. …”
-
65
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…</p><p dir="ltr"><b>ridge_gwr.py</b>: Implementations of a modified Geographically Weighted Regression (GWR) with ridge regression</p><p dir="ltr"><b>ridge_sel_bw.py</b>: Implementations of a modified selector of band width in GWR with ridge regression</p><p dir="ltr"><b>scenario_manager.py</b>: Functions to create simulation scenarios</p><p dir="ltr"><b>utility.py</b>: Functions for testing spatial causal effects using different models and placebo tests for inference.…”
-
66
Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples
Published 2025“…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …”
-
67
Image 1_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
68
Image 2_Differential diagnosis of pneumoconiosis mass shadows and peripheral lung cancer using CT radiomics and the AdaBoost machine learning model.tif
Published 2025“…LR, SVM, and AdaBoost algorithms were implemented using Python to build the models. In the training set, the accuracies of the LR, SVM, and AdaBoost models were 79.4, 84.0, and 80.9%, respectively; the sensitivities were 74.1, 74.1, and 81.0%, respectively; the specificities were 83.6, 91.8, and 80.8%, respectively; and the AUC values were 0.837, 0.886, and 0.900, respectively. …”
-
69
Code
Published 2025“…</p><p><br></p><p dir="ltr">For the 5′ UTR library, we developed a Python script to extract sequences and Unique Molecular Identifiers (UMIs) from the FASTQ files. …”
-
70
Core data
Published 2025“…</p><p><br></p><p dir="ltr">For the 5′ UTR library, we developed a Python script to extract sequences and Unique Molecular Identifiers (UMIs) from the FASTQ files. …”