Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
teer decrease » mean decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
teer decrease » mean decrease (Expand Search)
-
3941
Col outcomes QR.
Published 2025“…</p><p>Results</p><p>Statistically significant improvements were observed in human rights understanding, reduced stigmatizing attitudes toward mental health and decreased authoritarianism. …”
-
3942
Pre-post comparison of study variables.
Published 2025“…</p><p>Results</p><p>Statistically significant improvements were observed in human rights understanding, reduced stigmatizing attitudes toward mental health and decreased authoritarianism. …”
-
3943
ELISA of the key proteins.
Published 2024“…KEGG pathway analysis showed a significant enrichment of DEPs in PI3K-Akt pathway and focal adhesion. …”
-
3944
-
3945
-
3946
-
3947
-
3948
-
3949
-
3950
-
3951
Major hyperparameters of RF-SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3952
Pseudo code for coupling model execution process.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3953
Major hyperparameters of RF-MLPR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3954
Results of RF algorithm screening factors.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3955
Schematic diagram of the basic principles of SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
3956
-
3957
Sectioning method.
Published 2025“…Additionally, welding sequences significantly affect residual stress magnitudes without altering their general distribution patterns. …”
-
3958
Primer sequences used for RT-PCR.
Published 2025“…Notably, SIRT1 levels decrease with age in both mice and during cellular senescence, highlighting its significance in anti-aging processes. …”
-
3959
Parametric studies.
Published 2025“…Additionally, welding sequences significantly affect residual stress magnitudes without altering their general distribution patterns. …”
-
3960
FEM of HSS welded box-section.
Published 2025“…Additionally, welding sequences significantly affect residual stress magnitudes without altering their general distribution patterns. …”