Showing 15,141 - 15,160 results of 15,169 for search '(( significance ((test decrease) OR (greater decrease)) ) OR ( significantly increased decrease ))', query time: 0.69s Refine Results
  1. 15141

    Overview of the study area. by Tingting Cui (564531)

    Published 2024
    “…The factors within the Park attributes (G1) and the park’s social media level (G4) showed a two-way interaction strength increase. (4)The coefficients of influence of impact factors on the space heterogeneity of vacation park vitality exhibit significant variation. …”
  2. 15142

    Single factor detection results. by Tingting Cui (564531)

    Published 2024
    “…The factors within the Park attributes (G1) and the park’s social media level (G4) showed a two-way interaction strength increase. (4)The coefficients of influence of impact factors on the space heterogeneity of vacation park vitality exhibit significant variation. …”
  3. 15143

    Impact of mobility in a three-region system with heterogeneous epidemic conditions. by Mousumi Roy (8869412)

    Published 2025
    “…From left to right, we consider the scenarios with decreasing outgoing mobility and increasing non-commuting population. …”
  4. 15144

    Types of interaction between two factors. by Tingting Cui (564531)

    Published 2024
    “…The factors within the Park attributes (G1) and the park’s social media level (G4) showed a two-way interaction strength increase. (4)The coefficients of influence of impact factors on the space heterogeneity of vacation park vitality exhibit significant variation. …”
  5. 15145

    Research frameworks. by Tingting Cui (564531)

    Published 2024
    “…The factors within the Park attributes (G1) and the park’s social media level (G4) showed a two-way interaction strength increase. (4)The coefficients of influence of impact factors on the space heterogeneity of vacation park vitality exhibit significant variation. …”
  6. 15146

    Model index comparison. by Tingting Cui (564531)

    Published 2024
    “…The factors within the Park attributes (G1) and the park’s social media level (G4) showed a two-way interaction strength increase. (4)The coefficients of influence of impact factors on the space heterogeneity of vacation park vitality exhibit significant variation. …”
  7. 15147

    Datasheet1_Global, regional, and national time trends in ischaemic heart disease incidence over three decades (1990–2019): an age-period-cohort analysis of the global burden of dis... by Juan Tang (437969)

    Published 2024
    “…Age effects across all countries and genders demonstrated an increasing trend over time, indicating age as a significant risk factor for IHD. …”
  8. 15148

    Table1_Trp-574-Leu and the novel Pro-197-His/Leu mutations contribute to penoxsulam resistance in Echinochloa crus-galli (L.) P. Beauv..docx by Penglei Sun (18343673)

    Published 2024
    “…In vitro ALS activity assays demonstrated a significantly higher activity in AH-R compared to the susceptible population (YN-S). …”
  9. 15149

    Table2_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  10. 15150

    Table13_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  11. 15151

    Table12_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  12. 15152

    Table3_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  13. 15153

    Table9_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  14. 15154

    Image1_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.tif by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  15. 15155

    Table7_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  16. 15156

    Table6_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  17. 15157

    Table11_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  18. 15158

    Table8_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  19. 15159

    Table5_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  20. 15160

    Table10_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”