يعرض 2,521 - 2,540 نتائج من 21,342 نتيجة بحث عن '(( significance ((tests decrease) OR (greater decrease)) ) OR ( significant decrease decrease ))', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 2521
  2. 2522

    Proportions of test specimens. حسب Yao Long (1604773)

    منشور في 2025
    "…Finally, the intrinsic and damage mechanisms through which BF improves the mechanical properties of cement cured red sandstone soil were elucidated in conjunction with scanning electron microscopy (SEM) testing. The results of the study indicate that cement significantly enhances the water stability of red sandstone soil. …"
  3. 2523

    Fig 6 - حسب Takafumi Kabuto (14797727)

    منشور في 2024
    الموضوعات:
  4. 2524

    Fig 4 - حسب Takafumi Kabuto (14797727)

    منشور في 2024
    الموضوعات:
  5. 2525
  6. 2526

    Fig 5 - حسب Takafumi Kabuto (14797727)

    منشور في 2024
    الموضوعات:
  7. 2527
  8. 2528
  9. 2529
  10. 2530
  11. 2531
  12. 2532
  13. 2533

    Data. حسب Michael C. Payne (2664379)

    منشور في 2025
    الموضوعات:
  14. 2534

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane حسب Ching Yoong Loh (17863097)

    منشور في 2025
    "…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
  15. 2535

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane حسب Ching Yoong Loh (17863097)

    منشور في 2025
    "…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
  16. 2536

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane حسب Ching Yoong Loh (17863097)

    منشور في 2025
    "…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
  17. 2537

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane حسب Ching Yoong Loh (17863097)

    منشور في 2025
    "…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
  18. 2538

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane حسب Ching Yoong Loh (17863097)

    منشور في 2025
    "…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
  19. 2539
  20. 2540