بدائل البحث:
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
tests decrease » costs decreased (توسيع البحث), teer decrease (توسيع البحث), visits decreased (توسيع البحث)
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
tests decrease » costs decreased (توسيع البحث), teer decrease (توسيع البحث), visits decreased (توسيع البحث)
-
2521
-
2522
Proportions of test specimens.
منشور في 2025"…Finally, the intrinsic and damage mechanisms through which BF improves the mechanical properties of cement cured red sandstone soil were elucidated in conjunction with scanning electron microscopy (SEM) testing. The results of the study indicate that cement significantly enhances the water stability of red sandstone soil. …"
-
2523
-
2524
-
2525
-
2526
-
2527
-
2528
-
2529
-
2530
-
2531
-
2532
Changes in Mf (A and B) CFA (C and D) prevalence at baseline, 1, 2 and 3 years after starting MDA.
منشور في 2025الموضوعات: -
2533
-
2534
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
2535
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
2536
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
2537
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
2538
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
2539
-
2540