Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
20361
Table 8_Genome-wide association study of seedling–plant resistance to stripe rust in bread wheat (Triticum aestivum L.) genotypes.xlsx
Published 2025“…<p>Fungal diseases, such as stripe rust, are major bottlenecks in Ethiopian wheat production. They can significantly reduce yields and impact regional food security. …”
-
20362
Table 14_Genome-wide association study of seedling–plant resistance to stripe rust in bread wheat (Triticum aestivum L.) genotypes.xlsx
Published 2025“…<p>Fungal diseases, such as stripe rust, are major bottlenecks in Ethiopian wheat production. They can significantly reduce yields and impact regional food security. …”
-
20363
C2f and BC2f module structure diagrams.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20364
YOLOv8n detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20365
YOLOv8n-BWG model structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20366
data.zip
Published 2025“…Compared with the control group, the thickness of retina in the experimental group was significantly reduced (t=5, P=0.0075), the number of retinal pigment epithelium was statistically decreased (t=4.243, P=0.0132), and the pyrolytic related proteins NLRP3, Caspase-1, GSDMD, IL-1β and IL-18 were strongly red positive in retinal pigment epithelium (P<0.05). …”
-
20367
BiFormer structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20368
YOLOv8n-BWG detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20369
GSConv module structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20370
DC parameters.
Published 2025“…The results show that the system can effectively recover waste heat from the DC, significantly reducing cooling electricity consumption during the heating season and decreasing original heating steam consumption by about 25%. …”
-
20371
Performance comparison of three loss functions.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20372
mAP0.5 Curves of various models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20373
Network loss function change diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20374
Comparative diagrams of different indicators.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20375
Table 1_Study on the effect of different types of sugar on proliferation and inflammatory in goose fatty liver.docx
Published 2025“…Glucose combined with si-CPT1A treatment decreased CyclinD3 while increasing p21 expression. …”
-
20376
YOLOv8n structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20377
Geometric model of the binocular system.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20378
Enhanced dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
20379
Image 2_Delineation of single-cell Altas provides new insights for development of coronary artery lesions in Kawasaki disease: bad and good signaling molecules.tif
Published 2025“…In the monocytes of CAL patients, MCH-II is a significantly increased signal and RESISTIN is a significantly decreased signal compared to non-CAL counterpart.…”
-
20380
Image 3_Delineation of single-cell Altas provides new insights for development of coronary artery lesions in Kawasaki disease: bad and good signaling molecules.tif
Published 2025“…In the monocytes of CAL patients, MCH-II is a significantly increased signal and RESISTIN is a significantly decreased signal compared to non-CAL counterpart.…”