Showing 241 - 260 results of 5,979 for search '(( significance we decrease ) OR ( significant decrease decrease ))~', query time: 0.25s Refine Results
  1. 241

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
  2. 242

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
  3. 243

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
  4. 244

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
  5. 245

    Supplementary data. by Malte Ostendarp (13217973)

    Published 2025
    “…In contrast, the addition of hydrogen at 26 °C caused a significant decrease in the photophysiology of both <i>Acropora</i> sp. and <i>P. verrucosa</i>. …”
  6. 246

    Regional Characteristics in Ultradeep MXene Slit Nanopores: Insights from Molecular Dynamics Simulation by Kaiqing Sun (18715965)

    Published 2025
    “…As the interlayer spacing varies, the ion distribution in the electrode pores exhibits regional characteristics: in the ordered region near the bulk region, a stable electrical double-layer (EDL) structure is maintained, whereas in the deeper mixed region, persistent co-ion presence and significant disorder are observed. Dominated by the mixed region, the total energy variation of the electrode decreases as the interlayer spacing decreases, with energy changes of 8526.52, 7443.52, and 6640.99 kJ·mol<sup>–1</sup> at interlayer spacings of 1.2, 1.0, and 0.8 nm, respectively, representing reductions of approximately 12.7 and 22.1% compared to 1.2 nm. …”
  7. 247

    Regional Characteristics in Ultradeep MXene Slit Nanopores: Insights from Molecular Dynamics Simulation by Kaiqing Sun (18715965)

    Published 2025
    “…As the interlayer spacing varies, the ion distribution in the electrode pores exhibits regional characteristics: in the ordered region near the bulk region, a stable electrical double-layer (EDL) structure is maintained, whereas in the deeper mixed region, persistent co-ion presence and significant disorder are observed. Dominated by the mixed region, the total energy variation of the electrode decreases as the interlayer spacing decreases, with energy changes of 8526.52, 7443.52, and 6640.99 kJ·mol<sup>–1</sup> at interlayer spacings of 1.2, 1.0, and 0.8 nm, respectively, representing reductions of approximately 12.7 and 22.1% compared to 1.2 nm. …”
  8. 248

    Regional Characteristics in Ultradeep MXene Slit Nanopores: Insights from Molecular Dynamics Simulation by Kaiqing Sun (18715965)

    Published 2025
    “…As the interlayer spacing varies, the ion distribution in the electrode pores exhibits regional characteristics: in the ordered region near the bulk region, a stable electrical double-layer (EDL) structure is maintained, whereas in the deeper mixed region, persistent co-ion presence and significant disorder are observed. Dominated by the mixed region, the total energy variation of the electrode decreases as the interlayer spacing decreases, with energy changes of 8526.52, 7443.52, and 6640.99 kJ·mol<sup>–1</sup> at interlayer spacings of 1.2, 1.0, and 0.8 nm, respectively, representing reductions of approximately 12.7 and 22.1% compared to 1.2 nm. …”
  9. 249

    Data for Fig 1. by Rachael M. Giersch (22331947)

    Published 2025
    “…We also observe a significant decrease in survival in animals that progress to >10% cancer in their hemolymph, while we see no effect on survival in clams with BTN that are long-term non-progressors. …”
  10. 250
  11. 251
  12. 252
  13. 253
  14. 254
  15. 255

    S1 Data - by Richard Junior Zapata Dongo (17912565)

    Published 2025
    “…This interaction was further supported by a significant decrease of ALK phosphorylation in single and combination treatment with 300nM ABT-199. …”
  16. 256

    Study-related adverse events. by Benjamin R. Lewis (22279166)

    Published 2025
    “…In a linear mixed model analysis (LMM), the MBSR + PAP arm evidenced a significantly larger decrease in QIDS-SR-16 score than the MBSR-only arm from baseline to 2-weeks post-intervention (between-groups effect = 4.6, 95% CI [1.51, 7.70]; <i>p</i> = 0.008). …”
  17. 257

    Study flow chart. by Benjamin R. Lewis (22279166)

    Published 2025
    “…In a linear mixed model analysis (LMM), the MBSR + PAP arm evidenced a significantly larger decrease in QIDS-SR-16 score than the MBSR-only arm from baseline to 2-weeks post-intervention (between-groups effect = 4.6, 95% CI [1.51, 7.70]; <i>p</i> = 0.008). …”
  18. 258

    Study CONSORT diagram. by Benjamin R. Lewis (22279166)

    Published 2025
    “…In a linear mixed model analysis (LMM), the MBSR + PAP arm evidenced a significantly larger decrease in QIDS-SR-16 score than the MBSR-only arm from baseline to 2-weeks post-intervention (between-groups effect = 4.6, 95% CI [1.51, 7.70]; <i>p</i> = 0.008). …”
  19. 259

    RNA targets of Mod identified by RiP-Seq. by Amalia S. Parra (4173004)

    Published 2024
    “…Mod is expressed in larval brains and its loss leads to a significant decrease in the number of central brain NBs. …”
  20. 260