Showing 18,441 - 18,460 results of 21,342 for search '(( significant ((a decrease) OR (mean decrease)) ) OR ( significant decrease decrease ))', query time: 0.76s Refine Results
  1. 18441

    Detection visualization results on WEDU dataset. by Dunlu Lu (19964225)

    Published 2024
    “…This is particularly true in the agricultural field, where there is a multitude of crop types and a complex and variable environment. …”
  2. 18442

    Global maximum GPP from 2001-2018 by Xu (7493744)

    Published 2025
    “…The GPPmax estimates from this study and the changes in their trends were highly correlated with GPPmax estimates from the vegetation photosynthesis model, with R2 > 0.70 for most vegetation types. The GPPmax significantly increased in western North America, northern Europe, and eastern China, but decreased in tropical regions. …”
  3. 18443

    Highly Sensitive and Selective Electrochemical Sensor via Cu-BTC/Au@Cu-BTC Modified Screen-Printed Electrode for the Detection of Chemical Agents by Xiaosen Li (6263651)

    Published 2025
    “…Chemical agents present significant threat to international peace, security, and human health due to their potential toxicity. …”
  4. 18444

    <b>Differences in White Matter Microstructure in Children With Type 1 Diabetes Persist During Longitudinal Follow up: Relation to Dysglycemia</b> by Nelly Mauras (8103110)

    Published 2025
    “…</p><p dir="ltr">We observed in 182 children (121 type 1 diabetes, vs. 61 controls) who had testing at Time 4 that FA increased, and RD, AD, MD decreased significantly in both groups, with no differences between groups for FA, RD and MD over time. …”
  5. 18445

    Generated spline library. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  6. 18446

    Correlation coefficient matrix. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  7. 18447

    Actual measurement of shape errors. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  8. 18448

    RMSE versus learning rate. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  9. 18449

    RMSE versus training parameters. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  10. 18450

    Assembly process of machine recognition form. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  11. 18451

    Process of steel truss incremental launching. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  12. 18452

    CGAN and AutoML stacking device. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  13. 18453

    Comprehensive prediction process of shape errors. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  14. 18454

    Shape error manual calculation process. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  15. 18455

    U-wave estimates versus R-matrix noise variance. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  16. 18456

    Sliding window process. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  17. 18457

    Original record form of error matrix. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  18. 18458

    Form for machine recognition. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  19. 18459

    RMSE versus architectural parameters. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”
  20. 18460

    Kalman process. by Zhe Hu (787283)

    Published 2025
    “…Then, the LSTM model is trained using this sliding window approach, achieving a root mean square error(RMSE) of 0.03 on the test set. …”