Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
anti decrease » a decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
anti decrease » a decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
3401
Changes in the active H3K27ac and repressive H3K27me3 histone marks among Vasa2+/Piwi1+ and all cells in fed, starved, and refed juvenile polyps.
Published 2025“…Between fed, T<sub>5ds</sub> and T<sub>20ds</sub> timepoints, MFI levels of H3K27ac progressively and significantly decreased while levels H3K27me3 (M) did not change significantly (N). …”
-
3402
-
3403
The TOR inhibitors Rapamycin and AZD-8055 strongly reduce RPS6 phosphorylation and cell proliferation in Vasa2+/Piwi1+ cells.
Published 2025“…<i>n</i> = 2–4 biological replicates per condition, with 15 individuals per replicate. Significance levels for Student <i>t</i> test are indicated for adjusted <i>p</i> values: *<i>p</i> < 0.05, ***<i>p</i> < 0.001, ***<i>p</i> < 0.0001. d: day(s), n.s.: non-significant. …”
-
3404
-
3405
Multi-State Redox and Light-Driven Switching of Pseudorotaxanation and Cation Shuttling
Published 2025“…Specifically, the neutral switches can be quantitatively converted between <i>anti-</i> and <i>syn-</i>folded receptor geometries by irradiation, leading to the discovery of a significant increase or decrease in cation binding affinity, which was exploited to shuttle the pseudorotaxane-forming dibenzylammonium guest between the switchable crown ethers of slightly different sizes. …”
-
3406
Testing set error.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3407
Internal structure of an LSTM cell.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3408
Prediction effect of each model after STL.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3409
Estimated results of the mediation effect.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3410
The kernel density plot for data of each feature.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3411
Panel unit root test result.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3412
Analysis of raw data prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3413
Flowchart of the STL.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3414
SARIMA predicts season components.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3415
Kernel density estimation for CO2.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3416
BWO-BiLSTM model prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3417
Change in panel quantile regression coefficients.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3418
Bi-LSTM architecture diagram.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3419
STL Linear Combination Forecast Graph.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3420
LOSS curves for BWO-BiLSTM model training.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”