Showing 81 - 100 results of 31,567 for search '(( significant ((changes decrease) OR (larger decrease)) ) OR ( significant coverage increased ))', query time: 0.55s Refine Results
  1. 81
  2. 82
  3. 83
  4. 84
  5. 85
  6. 86
  7. 87

    Change trends of urban population in the Northeast region and the Yangtze River Delta. by Luofu Liu (6436961)

    Published 2024
    Subjects: “…important practical significance…”
  8. 88

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  9. 89

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  10. 90

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  11. 91

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  12. 92

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  13. 93

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  14. 94

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  15. 95

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  16. 96

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  17. 97

    Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale by Or Eivgi (1677280)

    Published 2022
    “…Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. …”
  18. 98
  19. 99
  20. 100