Search alternatives:
significance teer » significance test (Expand Search), significance level (Expand Search), significance tests (Expand Search)
changes decrease » larger decrease (Expand Search), change increases (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
significance teer » significance test (Expand Search), significance level (Expand Search), significance tests (Expand Search)
changes decrease » larger decrease (Expand Search), change increases (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
6621
Image 1_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6622
-
6623
Image 12_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6624
Image 11_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6625
Image 2_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6626
-
6627
Image 10_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6628
Image 9_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6629
Image 3_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6630
Image 7_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6631
Image 6_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6632
Image 8_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6633
Image 5_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6634
-
6635
Data Sheet 1_Consistent microbial responses during the aerobic thaw of Alaskan permafrost soils.docx
Published 2025“…Alpha diversity decreased with thaw across all sites, likely reflecting the increased dominance of specific thaw-responsive taxa that may be driving post-thaw biogeochemistry and increased respiration. …”
-
6636
Image 4_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg
Published 2024“…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
-
6637
Table1_Drought stress reduces arbuscular mycorrhizal colonization of Poncirus trifoliata (L.) roots and plant growth promotion via lipid metabolism.docx
Published 2024“…Results indicated that AM fungal inoculation significantly promoted the drought tolerance of P. trifoliata (L.), with the effect size decreasing along with drought severity. …”
-
6638
Table2_Drought stress reduces arbuscular mycorrhizal colonization of Poncirus trifoliata (L.) roots and plant growth promotion via lipid metabolism.xlsx
Published 2024“…Results indicated that AM fungal inoculation significantly promoted the drought tolerance of P. trifoliata (L.), with the effect size decreasing along with drought severity. …”
-
6639
DataSheet1_Drought stress reduces arbuscular mycorrhizal colonization of Poncirus trifoliata (L.) roots and plant growth promotion via lipid metabolism.docx
Published 2024“…Results indicated that AM fungal inoculation significantly promoted the drought tolerance of P. trifoliata (L.), with the effect size decreasing along with drought severity. …”
-
6640