Showing 901 - 920 results of 21,342 for search '(( significant ((gain decreased) OR (point decrease)) ) OR ( significant decrease decrease ))', query time: 0.45s Refine Results
  1. 901
  2. 902
  3. 903
  4. 904
  5. 905
  6. 906
  7. 907
  8. 908
  9. 909
  10. 910

    Amplitude for A/L = 0.29. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  11. 911

    Top view of the experimental setup. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  12. 912

    Amplitude for A/L = 0.338. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  13. 913

    Parameters of energy harvesting. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  14. 914

    Graph for Max Amplitude/Length at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  15. 915

    Amplitude for A/L = 0.02. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  16. 916

    Graph for maximum Frequency at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  17. 917

    Graph for maximum Power at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  18. 918

    Amplitude for A/L = 0.03. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  19. 919

    Summary of experimentation results. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  20. 920

    Piezoelectric eel. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”