Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
i.e decrease » we decrease (Expand Search), sizes decrease (Expand Search), use decreased (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
i.e decrease » we decrease (Expand Search), sizes decrease (Expand Search), use decreased (Expand Search)
-
3321
SARIMA predicts season components.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3322
Kernel density estimation for CO2.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3323
BWO-BiLSTM model prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3324
Change in panel quantile regression coefficients.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3325
Bi-LSTM architecture diagram.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3326
STL Linear Combination Forecast Graph.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3327
LOSS curves for BWO-BiLSTM model training.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3328
Definitions of variables and measurements.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3329
Analysis of STL-PCA prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3330
Accumulated contribution rate of PCA.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3331
Regression estimates: Double threshold model.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3332
Figure of ablation experiment.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3333
Results from cross sectional dependence test.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3334
Flowchart of the STL-PCA-BWO-BiLSTM model.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3335
Parameter optimization results of BiLSTM.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3336
Descriptive statistical analysis of data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3337
The MAE value of the model under raw data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3338
Three error values under raw data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
3339
Panel quantile regression results.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
3340
Decomposition of time scries plot.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”