Search alternatives:
significant barrier » significant burden (Expand Search)
largest decrease » marked decrease (Expand Search)
barrier decrease » barrier disease (Expand Search), marked decrease (Expand Search), barrier creates (Expand Search)
larger decrease » marked decrease (Expand Search)
significant barrier » significant burden (Expand Search)
largest decrease » marked decrease (Expand Search)
barrier decrease » barrier disease (Expand Search), marked decrease (Expand Search), barrier creates (Expand Search)
larger decrease » marked decrease (Expand Search)
-
441
Data Sheet 1_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.docx
Published 2025“…</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
-
442
Data Sheet 7_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip
Published 2025“…</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
-
443
Data Sheet 3_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip
Published 2025“…</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
-
444
Table 1_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.xlsx
Published 2025“…</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
-
445
Data Sheet 2_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip
Published 2025“…</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
-
446
Image 1_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.tif
Published 2025“…</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
-
447
Data Sheet 4_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip
Published 2025“…</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
-
448
Data Sheet 5_Mechanistic study of the hsa_circ_0074158 binding EIF4A3 impairing sepsis-induced endothelial barrier.zip
Published 2025“…</p>Results<p>In both LPS-treated human umbilical vein endothelial cells (HUVECs) and cecal ligation and puncture (CLP) murine models, the overexpression of hsa_circ_0074158 (the mouse homolog of hsa_circ_0074158 is named circ_Ctnna1) significantly decreased CTNNA1 mRNA stability and increased endothelial hyperpermeability, while its knockdown restored barrier integrity. …”
-
449
Data Sheet 1_Therapeutic potential of Glycyrrhiza polysaccharides in pseudorabies virus infection: immune modulation, antioxidant activity, and gut microbiota restoration.pdf
Published 2025“…</p>Results<p>GP administration significantly alleviated PRV-induced symptoms, reduced mortality and disease activity index, and improved food intake. …”
-
450
Table 1_S-equol status modulates skin response to soy isoflavones in postmenopausal women: results from a randomized placebo-controlled pilot trial.docx
Published 2025“…</p>Results<p>Crow’s feet wrinkle roughness decreased by 5.6% in the Novasoy®400 group versus a 1.6% increase in the placebo group, this difference was not statistically significant. …”
-
451
Table 7_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.csv
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
452
Table 9_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.csv
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
453
Table 4_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.csv
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
454
Table 2_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.xlsx
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
455
Table 3_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.xlsx
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
456
Table 1_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.xlsx
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
457
Table 6_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.csv
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
458
Table 5_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.csv
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
459
Table 8_Cardiac energy metabolic disorder and gut microbiota imbalance: a study on the therapeutic potential of Shenfu Injection in rats with heart failure.csv
Published 2025“…</p>Results<p>Myocardial energy metabolism in HF rats was disordered, characterized by reduced fatty acid oxidation, enhanced anaerobic glycolysis of glucose, mitochondrial damage, and decreased ATP content; The gut microbiota of HF rats was imbalanced, with a reduction in beneficial bacteria, an increase in conditional pathogenic bacteria, and impaired intestinal barrier function; Both Shenfu Injection and trimetazidine improved myocardial energy metabolism and cardiac function, but Shenfu Injection was more significant in regulating gut microbiota and improving intestinal health; The production of SCFAs from the gut microbiota of HF rats increased, which may be closely related to myocardial energy metabolism; SCFAs-producing bacteria Akkermansia and Blautia played a key role in the development of HF, and their abundance was positively correlated with SCFAs content.…”
-
460