Showing 1 - 20 results of 11,052 for search '(( significant ((largest decrease) OR (marked decrease)) ) OR ( significant prediction errors ))', query time: 0.83s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  10. 10
  11. 11
  12. 12

    Display of significance test results. by Qingchun Jiao (18388097)

    Published 2025
    “…Analysis of variance (ANOVA) indicates that, across multiple datasets constructed from fabrics with different elasticity grades, the model shows extremely significant differences (p < 0.001) in the metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) at each prediction step. …”
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  20. 20

    Model prediction error trend chart. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”