Showing 681 - 700 results of 24,761 for search '(( significant ((mean decrease) OR (point increase)) ) OR ( significant decrease decrease ))', query time: 0.66s Refine Results
  1. 681
  2. 682
  3. 683
  4. 684

    Amplitude for A/L = 0.29. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  5. 685

    Top view of the experimental setup. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  6. 686

    Amplitude for A/L = 0.338. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  7. 687

    Parameters of energy harvesting. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  8. 688

    Graph for Max Amplitude/Length at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  9. 689

    Amplitude for A/L = 0.02. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  10. 690

    Graph for maximum Frequency at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  11. 691

    Graph for maximum Power at G<sub>y</sub> = 0. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  12. 692

    Amplitude for A/L = 0.03. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  13. 693

    Summary of experimentation results. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  14. 694

    Piezoelectric eel. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
  15. 695
  16. 696
  17. 697

    S1 File - by Jacob P. Rastas (20642173)

    Published 2025
    Subjects:
  18. 698
  19. 699
  20. 700