Search alternatives:
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
new decrease » nn decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
significantly increased » significant increase (Expand Search)
increased decrease » increased release (Expand Search), increased crash (Expand Search)
new decrease » nn decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
1141
-
1142
Participant characteristics in studies of children with biopsy-proven NAFLD.
Published 2024Subjects: -
1143
-
1144
Transcriptomics-Driven Discovery of New Meroterpenoid Rhynchospenes Involved in the Virulence of the Barley Pathogen <i>Rhynchosporium commune</i>
Published 2025“…The resulting mutant showed significantly reduced expression of the <i>rhy</i> cluster <i>in planta</i> compared to the wild-type strain and decreased virulence in seedling pathogenicity assays on barley. …”
-
1145
-
1146
-
1147
-
1148
-
1149
PTEN KD increases chromatin accessibility.
Published 2024“…Red dots indicate peaks with significantly increased or decreased accessibility with Log2 FC > |0.5|. …”
-
1150
-
1151
-
1152
-
1153
-
1154
-
1155
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1156
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1157
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1158
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1159
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1160