Showing 121 - 140 results of 77,970 for search '(( significant ((nn decrease) OR (a decrease)) ) OR ( significant gap increase ))', query time: 2.87s Refine Results
  1. 121
  2. 122

    Image_1_Analysis of global nutrient gaps and their potential to be closed through redistribution and increased supply.TIFF by Andrew J. Fletcher (14268272)

    Published 2024
    “…Our findings reveal that while some nutrients appear to be adequately supplied on a global scale, many countries face national insufficiencies (% supply below the population reference intake) in essential vitamins and minerals, such as vitamins A, B12, B2, potassium, and iron. Closing these gaps will require significant increases in nutrient supply. …”
  3. 123
  4. 124
  5. 125
  6. 126
  7. 127
  8. 128
  9. 129
  10. 130

    Oxidative Nickel-Catalyzed <i>ortho</i>-C–H Amination of (Iso)quinolines with Alicyclic Amines Directed by a Sacrificial <i>N</i>‑Oxide Group by Weiqi Zhu (17845973)

    Published 2024
    “…Transition metal (TM)-catalyzed direct amination of C–H bonds on free or fused pyridine (Py) rings with free amines still remains scarce because amines and the Py ring tend to adopt a nonproductive N-bound coordination with many TMs, leading to a significant decrease of catalytic reactivity. …”
  11. 131
  12. 132

    Table_1_Thinning can increase shrub diversity and decrease herb diversity by regulating light and soil environments.docx by Jiatong Yu (13202610)

    Published 2022
    “…The responses of species diversity to changes in understory vegetation were conducted by a structural equation model (SEM). The results showed that compared with CK, thinning significantly increased the photosynthetically active radiation (PAR) and the light quality (R/FR) (p < 0.05), while decreased the contents of soil total nitrogen (TN), total phosphorous (TP), organic matter (OM), nitrate nitrogen (NN), ammonia nitrogen (AN) and pH. …”
  13. 133

    Image_1_Thinning can increase shrub diversity and decrease herb diversity by regulating light and soil environments.jpg by Jiatong Yu (13202610)

    Published 2022
    “…The responses of species diversity to changes in understory vegetation were conducted by a structural equation model (SEM). The results showed that compared with CK, thinning significantly increased the photosynthetically active radiation (PAR) and the light quality (R/FR) (p < 0.05), while decreased the contents of soil total nitrogen (TN), total phosphorous (TP), organic matter (OM), nitrate nitrogen (NN), ammonia nitrogen (AN) and pH. …”
  14. 134
  15. 135
  16. 136
  17. 137
  18. 138
  19. 139
  20. 140