Showing 3,161 - 3,180 results of 21,342 for search '(( significant ((ns decrease) OR (a decrease)) ) OR ( significant decrease decrease ))', query time: 0.68s Refine Results
  1. 3161

    Accumulated contribution rate of PCA. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  2. 3162

    Figure of ablation experiment. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  3. 3163

    Flowchart of the STL-PCA-BWO-BiLSTM model. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  4. 3164

    Parameter optimization results of BiLSTM. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  5. 3165

    Descriptive statistical analysis of data. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  6. 3166

    The MAE value of the model under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  7. 3167

    Three error values under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  8. 3168

    Decomposition of time scries plot. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  9. 3169

    Estimated results of the mediation effect. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  10. 3170

    Panel unit root test result. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  11. 3171

    Kernel density estimation for CO2. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  12. 3172

    Change in panel quantile regression coefficients. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  13. 3173

    Definitions of variables and measurements. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  14. 3174

    Regression estimates: Double threshold model. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  15. 3175

    Results from cross sectional dependence test. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  16. 3176

    Panel quantile regression results. by Getachew Magnar Kitila (19935139)

    Published 2024
    “…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
  17. 3177
  18. 3178
  19. 3179
  20. 3180