يعرض 961 - 980 نتائج من 13,439 نتيجة بحث عن '(( significant ((portion decrease) OR (point decrease)) ) OR ( significant increase decrease ))', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 961
  2. 962
  3. 963
  4. 964
  5. 965
  6. 966
  7. 967

    Open data. حسب Larissa Brazolotto Ferreira (17671168)

    منشور في 2025
    الموضوعات:
  8. 968
  9. 969

    Scheme of the test section. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  10. 970

    Effects on cooling air mass flow rate. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  11. 971

    3D model and section view of E3 NGV. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  12. 972

    Conditions for uncertainty analyses. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  13. 973

    Scheme for mesh convergence study. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  14. 974

    Main test parameters. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  15. 975

    3-D printed NGV specimen. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  16. 976

    Relative error bar of surface temperature. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  17. 977

    Effect on the NGV leading edge temperature. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  18. 978

    Schematic of the test equipment. حسب Decang Lou (21439960)

    منشور في 2025
    "…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …"
  19. 979
  20. 980