Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
portion decrease » proportional decrease (Expand Search), point decrease (Expand Search)
point increase » unit increase (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
portion decrease » proportional decrease (Expand Search), point decrease (Expand Search)
point increase » unit increase (Expand Search)
-
1701
-
1702
-
1703
-
1704
-
1705
-
1706
Amplitude for A/L = 0.29.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1707
Top view of the experimental setup.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1708
Amplitude for A/L = 0.338.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1709
Parameters of energy harvesting.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1710
Graph for Max Amplitude/Length at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1711
Amplitude for A/L = 0.02.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1712
Graph for maximum Frequency at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1713
Graph for maximum Power at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1714
Amplitude for A/L = 0.03.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1715
Summary of experimentation results.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1716
Piezoelectric eel.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
1717
Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection
Published 2025“…As cooling progresses, they become more compact, a process accompanied by a reduction in water content, which is more significant as the solution concentration increases. …”
-
1718
Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection
Published 2025“…As cooling progresses, they become more compact, a process accompanied by a reduction in water content, which is more significant as the solution concentration increases. …”
-
1719
Molecular Insights into the Crystallization of 4’-Hydroxyacetophenone from Water: Solute Aggregation, Liquid–Liquid Phase Separation, and Polymorph Selection
Published 2025“…As cooling progresses, they become more compact, a process accompanied by a reduction in water content, which is more significant as the solution concentration increases. …”
-
1720