Search alternatives:
significantly larger » significantly lower (Expand Search), significantly higher (Expand Search), significantly better (Expand Search)
greatest decrease » greater decrease (Expand Search), treatment decreased (Expand Search), greater increase (Expand Search)
larger decrease » marked decrease (Expand Search)
rates decrease » rate decreased (Expand Search), greater decrease (Expand Search), ratio decreased (Expand Search)
significantly larger » significantly lower (Expand Search), significantly higher (Expand Search), significantly better (Expand Search)
greatest decrease » greater decrease (Expand Search), treatment decreased (Expand Search), greater increase (Expand Search)
larger decrease » marked decrease (Expand Search)
rates decrease » rate decreased (Expand Search), greater decrease (Expand Search), ratio decreased (Expand Search)
-
161
-
162
-
163
Raw data used to calculate the statistical significances stated in the result section.
Published 2024Subjects: -
164
-
165
Mortality rates per lifecycle stage [28].
Published 2024“…Implementing rapid vaccination after detecting the virus in ten individuals and achieving 40% coverage could reduce infection rates by 82%, preventing 139,805 cases. Scenario and sensitivity analyses confirm that even with lower vaccination coverage rates, significant benefits are observed: at 10% coverage, the number of infections drops to 115,231, and at 20% coverage, it further reduces to 76,031. …”
-
166
-
167
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
168
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
169
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
170
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
171
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
172
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
173
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
174
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
175
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
176
Real-Time Polymer Viscosity–Catalytic Activity Relationships on the Microscale
Published 2022“…Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. …”
-
177
-
178
-
179
-
180