Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
shape increases » showed increases (Expand Search), sharp increase (Expand Search), disease increases (Expand Search)
shape decrease » small decrease (Expand Search), step decrease (Expand Search), showed decreased (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
shape increases » showed increases (Expand Search), sharp increase (Expand Search), disease increases (Expand Search)
shape decrease » small decrease (Expand Search), step decrease (Expand Search), showed decreased (Expand Search)
-
481
Correlation coefficient matrix.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
482
RMSE versus learning rate.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
483
RMSE versus training parameters.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
484
Assembly process of machine recognition form.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
485
Process of steel truss incremental launching.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
486
CGAN and AutoML stacking device.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
487
U-wave estimates versus R-matrix noise variance.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
488
Sliding window process.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
489
Assembly error angle of a single spline.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
490
Original record form of error matrix.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
491
Form for machine recognition.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
492
RMSE versus architectural parameters.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
493
Kalman process.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
494
Attention mechanism.
Published 2025“…Following model updates with measured data, the accumulated prediction error rapidly decreases. The proposed prediction method for shape errors during pushing exhibits high accuracy and versatility in similar projects, significantly reducing time spent on manual error handling and minimizing computational inaccuracies.…”
-
495
-
496
-
497
-
498
-
499
Summary of significance levels for comparison of surgical segment ROM between different test groups.
Published 2025Subjects: -
500
Analysis of the Nugent score before (T=0) and after (T=1) the use of the vaginal gel. Number of participants and respective percentages of Nugent scores before and after the intervention. A statistically significant decrease in Nugent scores was observed after the intervention (p value =0.0047).
Published 2025“…Number of participants and respective percentages of Nugent scores before and after the intervention. A statistically significant decrease in Nugent scores was observed after the intervention (p value =0.0047).…”