يعرض 261 - 280 نتائج من 13,083 نتيجة بحث عن '(( significant ((shape decrease) OR (step decrease)) ) OR ( significant increase decrease ))', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 261

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane حسب Ching Yoong Loh (17863097)

    منشور في 2025
    "…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
  2. 262

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane حسب Ching Yoong Loh (17863097)

    منشور في 2025
    "…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
  3. 263

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane حسب Ching Yoong Loh (17863097)

    منشور في 2025
    "…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
  4. 264
  5. 265
  6. 266
  7. 267
  8. 268
  9. 269
  10. 270
  11. 271
  12. 272

    Inotodiol decreases clone formation in HCC cells. حسب Yushuang Xing (20636685)

    منشور في 2025
    "…In addition, inotodiol showed to induce apoptosis, characterized by an increase in Bax expression, a decrease in Bcl-2, Bcl-XL and MCL1 expression, the initiation of cleaved PARP1 and cleaved caspase 3, and inhibition of the MAPK/ERK pathway. …"
  13. 273
  14. 274
  15. 275
  16. 276
  17. 277
  18. 278
  19. 279
  20. 280