Showing 2,341 - 2,360 results of 38,434 for search '(( significant ((showed increases) OR (step decrease)) ) OR ( significant decrease decrease ))', query time: 0.64s Refine Results
  1. 2341

    Factor-level. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  2. 2342

    Gradation composition of asphalt mixture. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  3. 2343

    Technical specifications of mineral filler. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  4. 2344

    Technical indicators of coarse aggregate. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  5. 2345

    Technical specifications of fine aggregates. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  6. 2346

    Rutting test results of asphalt mixtures. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  7. 2347

    Gradation composition of asphalt mixture. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  8. 2348

    Results of the orthogonal test. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  9. 2349

    Rutting test results. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  10. 2350

    Technical Specifications of ZM Modifier. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  11. 2351

    Gradation curve of asphalt mixture. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  12. 2352

    Rutting test machine. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  13. 2353

    Basic performance indicators of base asphalt. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  14. 2354

    Rutting specimen. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  15. 2355

    Orthogonal experimental design. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  16. 2356

    Immersion Marshall test results. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  17. 2357

    Fatigue life under different stress ratios. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  18. 2358

    Freeze–thaw splitting test results. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  19. 2359

    Preparation flowchart of ZM-modified asphalt. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
  20. 2360

    Immersion Marshall test equipment and specimens. by Yining Wang (432154)

    Published 2025
    “…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”