Showing 161 - 180 results of 77,235 for search '(( significant ((step decrease) OR (a decrease)) ) OR ( significant force increase ))', query time: 1.72s Refine Results
  1. 161
  2. 162
  3. 163

    Data_Sheet_1_Microclimatic Warming Leads to a Decrease in Species and Growth Form Diversity: Insights From a Tropical Alpine Grassland.PDF by Sisimac A. Duchicela (11503918)

    Published 2021
    “…The increase of tussocks led to a significant decrease in species diversity and evenness inside OTCs, but not in species richness after accounting by sampling time. …”
  4. 164
  5. 165
  6. 166
  7. 167
  8. 168
  9. 169

    Force–displacement curves of M5. by Yukun Hu (427264)

    Published 2023
    “…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
  10. 170

    Force–displacement curves of M3. by Yukun Hu (427264)

    Published 2023
    “…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
  11. 171

    Force–displacement curves of M4. by Yukun Hu (427264)

    Published 2023
    “…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
  12. 172

    Force–displacement curves of M1. by Yukun Hu (427264)

    Published 2023
    “…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
  13. 173

    Force–displacement curves of M2. by Yukun Hu (427264)

    Published 2023
    “…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
  14. 174
  15. 175
  16. 176
  17. 177
  18. 178
  19. 179
  20. 180