Showing 1 - 20 results of 20 for search '(( significant ((step decrease) OR (a decrease)) ) OR ( significant optimization search ))~', query time: 1.74s Refine Results
  1. 1
  2. 2

    Improving Accuracy and Transferability of Machine Learning Chemical Activation Energies by Adding Electronic Structure Information by Esteban Marques (14713002)

    Published 2023
    “…Recent advances have shown that machine learning can be used to create tools to predict them. Such tools can significantly decrease the computational cost for these predictions compared to traditional methods, which require an optimal path search along a high-dimensional potential energy surface. …”
  3. 3

    Evaluation results of eye detection approaches. by Verdzekov Emile Tatinyuy (19959261)

    Published 2024
    “…<div><p>This study presents a novel multi-stage hierarchical approach to optimize key selection on virtual keyboards using eye gaze. …”
  4. 4

    Shows the block diagram of ResNet34. by Verdzekov Emile Tatinyuy (19959261)

    Published 2024
    “…<div><p>This study presents a novel multi-stage hierarchical approach to optimize key selection on virtual keyboards using eye gaze. …”
  5. 5

    Block diagram illustrating the solution approach. by Chattriya Jariyavajee (12822281)

    Published 2025
    “…The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. …”
  6. 6

    Example of graph representation of an CSP. by Chattriya Jariyavajee (12822281)

    Published 2025
    “…The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. …”
  7. 7

    Feasible stopper/saw positions. by Chattriya Jariyavajee (12822281)

    Published 2025
    “…The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. …”
  8. 8

    Pseudocode of the WACO algorithm. by Chattriya Jariyavajee (12822281)

    Published 2025
    “…The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. …”
  9. 9

    Schematic of the cutting machine. by Chattriya Jariyavajee (12822281)

    Published 2025
    “…The solution process involves three key steps: (i) Problem representation, where feasible cutting solutions are modeled based on pre-cut steel bars and customer orders, (ii) Problem space reduction, which reduces the problem space by eliminating suboptimal solutions and following manufacturer loss limits, and (iii) Optimal solution search, whereas the optimal solution is identified using a new Adaptive Pathfinding Optimization Algorithm. …”
  10. 10

    A typical cross signalized intersection. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  11. 11

    Value ranges of three representative points. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  12. 12

    Signalized intersection in Kunshan. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  13. 13

    Dynamic system state in demand scenarios 2. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  14. 14

    Survey data of the intersection. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  15. 15

    The main notations used in this paper. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  16. 16

    Feedback elimination for feedback queue. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  17. 17

    Four signal stages for the intersection. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  18. 18

    Dynamic system state in demand scenarios 3. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  19. 19

    Dynamic system state in demand scenarios 1. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”
  20. 20

    Characteristics comparison of related literature. by Bin Zhao (276445)

    Published 2025
    “…Numerical experiments using actual survey data from Kunshan City yield several noteworthy findings: (1) An optimal moderate-sized time step exists for rolling optimization to minimize either the average delay time or total costs; specifically, an excessively small time step may increase vehicle average delay time or total costs; (2) The percentage of delay reduction achieved by our method, compared to Synchro software, reaches a maximum of approximately 70% when traffic demand is moderate and the initial state is low; and (3) The percentage reduction in average delay or total costs compared to Synchro initially increases and then decreases with rising traffic intensity.…”