Showing 3,641 - 3,660 results of 21,342 for search '(( significant ((time decrease) OR (greater decrease)) ) OR ( significant decrease decrease ))', query time: 0.63s Refine Results
  1. 3641

    Fig 9 - by Zhezhe Zhang (19704587)

    Published 2024
    Subjects:
  2. 3642
  3. 3643
  4. 3644

    Fig 5 - by Zhezhe Zhang (19704587)

    Published 2024
    Subjects:
  5. 3645
  6. 3646
  7. 3647

    Fig 19 - by Zhezhe Zhang (19704587)

    Published 2024
    Subjects:
  8. 3648

    Fig 8 - by Zhezhe Zhang (19704587)

    Published 2024
    Subjects:
  9. 3649
  10. 3650
  11. 3651

    Major hyperparameters of RF-SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  12. 3652

    Pseudo code for coupling model execution process. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  13. 3653

    Major hyperparameters of RF-MLPR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  14. 3654

    Results of RF algorithm screening factors. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  15. 3655

    Schematic diagram of the basic principles of SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  16. 3656
  17. 3657
  18. 3658
  19. 3659
  20. 3660