Search alternatives:
increase decrease » increased release (Expand Search), increased crash (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
-
2001
-
2002
AC-LPN circuit control high temperature induced increase of evening sleep.
Published 2024“…(D–G) Optogenetic activation of ppkACs with CsChrimson (<i>Ppk-LexA>LexAop-CsChrimson</i>) increases LPN activity in vivo (D). Scale bars, 10 mm. …”
-
2003
-
2004
-
2005
-
2006
-
2007
Voxel-based whole-hemisphere analysis shows regional and dose-dependent decrease of microglia.
Published 2025“…<p>(A) Each 3-dimensional map of statistically affected voxels (p < 0.05, with the red scale, representing the significance in decrease of microglia, and the cyan scale, representing the increase in microglia; reference atlas is grey) summarizes all the treated and control samples within a cohort (3 samples per group). …”
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
Major hyperparameters of RF-SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
2016
Pseudo code for coupling model execution process.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
2017
Major hyperparameters of RF-MLPR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
2018
Results of RF algorithm screening factors.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
2019
Schematic diagram of the basic principles of SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
2020
The relative importance by dominance analysis.
Published 2025“…</p><p>Results</p><p>Results indicate that negative life experiences have a significant negative impact on sense of security, which first decreases but then increases over time. …”