Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
-
2201
-
2202
-
2203
Univariate analyses.
Published 2025“…Multiple linear regression with Generalized Estimating Equations (GEE) modelling was used to identify factors associated with mean monthly ED visits. Multivariate analysis showed the mean monthly ED visits increased significantly during the first year of COVID-19 than before the pandemic (Mean = 0.30 vs Mean = 0.21, p = 0.01). …”
-
2204
Overview of individuals in the study.
Published 2025“…Multiple linear regression with Generalized Estimating Equations (GEE) modelling was used to identify factors associated with mean monthly ED visits. Multivariate analysis showed the mean monthly ED visits increased significantly during the first year of COVID-19 than before the pandemic (Mean = 0.30 vs Mean = 0.21, p = 0.01). …”
-
2205
Multivariate analyses.
Published 2025“…Multiple linear regression with Generalized Estimating Equations (GEE) modelling was used to identify factors associated with mean monthly ED visits. Multivariate analysis showed the mean monthly ED visits increased significantly during the first year of COVID-19 than before the pandemic (Mean = 0.30 vs Mean = 0.21, p = 0.01). …”
-
2206
-
2207
-
2208
-
2209
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2210
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2211
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2212
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2213
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2214
Effects of compound 4f on cognitive function in mice with KA-induced neurodegeneration.
Published 2024Subjects: -
2215
-
2216
-
2217
-
2218
-
2219
-
2220