Showing 14,601 - 14,620 results of 14,620 for search '(( significant ((time decrease) OR (teer decrease)) ) OR ( significantly increased decrease ))', query time: 0.42s Refine Results
  1. 14601

    Data Sheet 1_Association of oxidative balance score with all-cause and cardiovascular mortality among patients with cardio-renal-metabolic disease.docx by Yucui Lin (21598376)

    Published 2025
    “…Moreover, Higher OBS quartiles were linked to a decreased risk of cardiovascular mortality, while no significant reduction was observed in the lower quartiles [model 3: Q2, Q3, Q4: aHR (95CI%) = 0.96(0.77–1.19), 0.78 (0.63–0.97), 0.70 (0.53–0.93), respectively; P for trend = 0.003]. …”
  2. 14602

    Causal associations between gut <i>Bifidobacteriaceae</i> and transplant failure: a Mendelian randomization study by Han Yan (126662)

    Published 2024
    “…</p> <p>Mendelian randomization studies have shown that a lower abundance of Bifidobacteriaceae in the gut could increase the risk of transplant failure.</p>…”
  3. 14603

    Changes in functional connectivity between NREM and REM – comparison of in vivo experimental and in silico modeling data. by Michael Satchell (21560808)

    Published 2025
    “…Red indicates pairs with decreasing functional connectivity from NREM to REM, black indicates pairs with increasing functional connectivity from NREM to REM. …”
  4. 14604

    Table2_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  5. 14605

    Table13_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  6. 14606

    Table12_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  7. 14607

    Table3_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  8. 14608

    Table9_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  9. 14609

    Image1_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.tif by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  10. 14610

    Table7_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  11. 14611

    Table6_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  12. 14612

    Table11_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  13. 14613

    Table8_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  14. 14614

    Table5_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  15. 14615

    Table10_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  16. 14616

    Table1_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  17. 14617

    Table4_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  18. 14618

    Image2_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.tif by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. …”
  19. 14619

    <i>mig-21</i> sensitizes adult DTCs to polarizing signals. by Xin Li (51274)

    Published 2025
    “…However, migration cessation is not rescued; a significant increase in “overmigration” defects is observed between marked control (n=4/57) and <i>mig-21(u787)</i> on <i>vab-3</i> RNAi (n=17/65), p < 0.05. …”
  20. 14620

    Excel raw data. by Michael Getie (12400923)

    Published 2025
    “…The effectiveness of currently available antimicrobial is decreasing due to the increasing prevalence of resistant strains among bacterial isolates. …”