Showing 1,401 - 1,420 results of 15,214 for search '(( significant ((we decrease) OR (small decrease)) ) OR ( significant increase decrease ))', query time: 0.65s Refine Results
  1. 1401
  2. 1402
  3. 1403
  4. 1404
  5. 1405
  6. 1406
  7. 1407

    Raw_data_N_adition_increased_SOC_PNAS.xlsx by Guoyong Yan (14273351)

    Published 2025
    “…We found that SOC significantly increased with N addition, driven by the combined responses of plants, soil, and microbes. …”
  8. 1408
  9. 1409
  10. 1410
  11. 1411
  12. 1412
  13. 1413
  14. 1414

    Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces by Niju K. Mohammed (22631779)

    Published 2025
    “…Results indicate that the maximum spreading diameter (β<sub>max</sub>) and the residence time of the composite droplet decrease with the increasing concavity ratio (δ) due to differences in axial and azimuthal spreading and gravity. …”
  15. 1415

    Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces by Niju K. Mohammed (22631779)

    Published 2025
    “…Results indicate that the maximum spreading diameter (β<sub>max</sub>) and the residence time of the composite droplet decrease with the increasing concavity ratio (δ) due to differences in axial and azimuthal spreading and gravity. …”
  16. 1416

    Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces by Niju K. Mohammed (22631779)

    Published 2025
    “…Results indicate that the maximum spreading diameter (β<sub>max</sub>) and the residence time of the composite droplet decrease with the increasing concavity ratio (δ) due to differences in axial and azimuthal spreading and gravity. …”
  17. 1417

    Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces by Niju K. Mohammed (22631779)

    Published 2025
    “…Results indicate that the maximum spreading diameter (β<sub>max</sub>) and the residence time of the composite droplet decrease with the increasing concavity ratio (δ) due to differences in axial and azimuthal spreading and gravity. …”
  18. 1418

    Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces by Niju K. Mohammed (22631779)

    Published 2025
    “…Results indicate that the maximum spreading diameter (β<sub>max</sub>) and the residence time of the composite droplet decrease with the increasing concavity ratio (δ) due to differences in axial and azimuthal spreading and gravity. …”
  19. 1419

    The speed diagram. by Yifei Li (198040)

    Published 2025
    Subjects:
  20. 1420