بدائل البحث:
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
significant adverse » significant advantage (توسيع البحث)
adverse decrease » rivers decreased (توسيع البحث)
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
significant adverse » significant advantage (توسيع البحث)
adverse decrease » rivers decreased (توسيع البحث)
-
3481
-
3482
-
3483
Synthesis and Biological Evaluation of MEK/mTOR Multifunctional Inhibitors as Novel Anticancer Agents
منشور في 2025"…Additionally, compound LP-65 demonstrated significant modulation of MEK and mTOR signaling activity in human glioma cells (D54) and human melanoma cells (A375), with a corresponding decrease in cellular proliferation and migration. …"
-
3484
Risk of bias summary.
منشور في 2025"…The observed decrease in body weight could be partially attributed to factors influencing energy balance, as evidenced by the significantly lower mean calorie intake at the end of the intervention (1694.71 kcal/day, 95% CI: 1498.57–1890.85) compared to the baseline intake (2000.64 kcal/day, 95% CI: 1830–2172.98), despite the absence of intentional efforts to restrict energy intake by the participants. …"
-
3485
Criteria for study selection.
منشور في 2025"…The observed decrease in body weight could be partially attributed to factors influencing energy balance, as evidenced by the significantly lower mean calorie intake at the end of the intervention (1694.71 kcal/day, 95% CI: 1498.57–1890.85) compared to the baseline intake (2000.64 kcal/day, 95% CI: 1830–2172.98), despite the absence of intentional efforts to restrict energy intake by the participants. …"
-
3486
Number of visits per clinic type, 2013-2015.
منشور في 2025"…During PE, statistically significant longer waiting times were found for surgery (+1.0 day) and imaging (+1.1 days), while a 2.4 days decrease was noted in pediatrics, controlled for age, sex, ethnicity and the daily number of visits. …"
-
3487
Treatment with vitamin D3 reduced the viability of cancer cell lines: <i>1A & 1B.</i>
منشور في 2025"…Mouse EAC cells showed a decrease in cell viability starting from 250 µM at 24h of treatment. …"
-
3488
-
3489
Vitamin D3, but not the Cisplatin, could moderately reduce STZ-induced hyperglycemia in mice (a) Schematic representation of experimental protocol followed in the study: After accl...
منشور في 2025"…(c) Vitamin D3 and the positive control Cisplatin differently modulated FBG in hyperglycaemic mice: Intraperitoneal administration of vitamin D3 very minimally decreased FBG compared to vehicle control at the end of the study. …"
-
3490
Changes in the active H3K27ac and repressive H3K27me3 histone marks among Vasa2+/Piwi1+ and all cells in fed, starved, and refed juvenile polyps.
منشور في 2025"…Between fed, T<sub>5ds</sub> and T<sub>20ds</sub> timepoints, MFI levels of H3K27ac progressively and significantly decreased while levels H3K27me3 (M) did not change significantly (N). …"
-
3491
-
3492
The TOR inhibitors Rapamycin and AZD-8055 strongly reduce RPS6 phosphorylation and cell proliferation in Vasa2+/Piwi1+ cells.
منشور في 2025"…<i>n</i> = 2–4 biological replicates per condition, with 15 individuals per replicate. Significance levels for Student <i>t</i> test are indicated for adjusted <i>p</i> values: *<i>p</i> < 0.05, ***<i>p</i> < 0.001, ***<i>p</i> < 0.0001. d: day(s), n.s.: non-significant. …"
-
3493
-
3494
Testing set error.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
3495
Internal structure of an LSTM cell.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
3496
Prediction effect of each model after STL.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
3497
The kernel density plot for data of each feature.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
3498
Analysis of raw data prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
3499
Flowchart of the STL.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
3500
SARIMA predicts season components.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"