Showing 1 - 20 results of 18,416 for search '(( significant cause decrease ) OR ( significant ((point decrease) OR (a decrease)) ))', query time: 0.49s Refine Results
  1. 1

    HFD decreases intermediate-term memory. by Tong Yue (6033305)

    Published 2025
    “…There was no significant decline in the survival rate in flies fed with HFD compared with ND (n = 10 vials, containing 20 flies at each time point). …”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Charts revealing A) the significant decrease (<i>p</i> < 0.05) in the membrane integrity and B) the significant increase (<i>p</i> < 0.05) in the membrane permeability after treatment with harmalacidine hydrochloride in a representative <i>S. aureus</i> isolate (n = 3 as technical repeats of the same isolate). by Manal A. Alossaimi (10269852)

    Published 2025
    “…<p>Charts revealing A) the significant decrease (<i>p</i> < 0.05) in the membrane integrity and B) the significant increase (<i>p</i> < 0.05) in the membrane permeability after treatment with harmalacidine hydrochloride in a representative <i>S. aureus</i> isolate (n = 3 as technical repeats of the same isolate).…”
  15. 15
  16. 16
  17. 17

    All data points from Fig 2. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. …”
  18. 18

    All data points from Fig 5. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. …”
  19. 19

    All data points from Fig 8. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. …”
  20. 20

    All data points from Fig 3. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. …”