Showing 1 - 20 results of 39,937 for search '(( significant chain based ) OR ( significant ((we decrease) OR (teer decrease)) ))', query time: 0.64s Refine Results
  1. 1
  2. 2
  3. 3

    Transepithelial electrical resistance (TEER) (N = 6). by Shirko Marcel Shokr (19173337)

    Published 2024
    “…<p><b>(A)</b> During the cultivation of SMC and ALI we observed significantly differences on day 18 (SMC: 9.61 kΩ*cm<sup>2</sup>; ALI: 7.73 kΩ*cm<sup>2</sup>; p<0.05) and day 25 (SMC: 8.19 kΩ*cm<sup>2</sup>; ALI: 6.44 kΩ*cm<sup>2</sup>; p<0.05) ALI cultures showed significantly decreased values compared to SMC. …”
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Overview of the WeARTolerance program. by Ana Beato (20489933)

    Published 2024
    “…<div><p>The stigma surrounding mental health remains a significant barrier to help-seeking and well-being in youth populations. …”
  9. 9

    Effect of Alkyl Chain Length on Charge Transport Property of Anthracene-Based Organic Semiconductors by Dongwei Zhang (350860)

    Published 2020
    “…This feature is related to the microstructures of the thin films, which reveal the enhanced film order, crystallinity, and grain size with a decrease in the alkyl chain length. Moreover, we theoretically analyze the intermolecular transfer integrals of HOMOs, which increase at T-shaped contacts as the alkyl chain length decreases, which improves the intermolecular charge transport properties, leading to the increases in mobility. …”
  10. 10

    Effect of Alkyl Chain Length on Charge Transport Property of Anthracene-Based Organic Semiconductors by Dongwei Zhang (350860)

    Published 2020
    “…This feature is related to the microstructures of the thin films, which reveal the enhanced film order, crystallinity, and grain size with a decrease in the alkyl chain length. Moreover, we theoretically analyze the intermolecular transfer integrals of HOMOs, which increase at T-shaped contacts as the alkyl chain length decreases, which improves the intermolecular charge transport properties, leading to the increases in mobility. …”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20