Search alternatives:
shape decrease » shape increases (Expand Search), step decrease (Expand Search), showed decreased (Expand Search)
small decrease » small increased (Expand Search)
challenge » challenges (Expand Search)
shape decrease » shape increases (Expand Search), step decrease (Expand Search), showed decreased (Expand Search)
small decrease » small increased (Expand Search)
challenge » challenges (Expand Search)
-
161
-
162
-
163
General characteristics and clinical data of the subjects included in the study.
Published 2025Subjects: -
164
-
165
-
166
-
167
-
168
-
169
-
170
-
171
-
172
-
173
-
174
Architecture of Swin-T model.
Published 2024“…However, traditional methods heavily rely on low-level image analysis, handcrafted features, and classical classifiers, leading to limited effectiveness and poor generalization in complex scenarios. Although significant progress has been made with deep learning methods, challenges persist in handling high-resolution images and diverse disease types. …”
-
175
Model the experimental results curve.
Published 2024“…However, traditional methods heavily rely on low-level image analysis, handcrafted features, and classical classifiers, leading to limited effectiveness and poor generalization in complex scenarios. Although significant progress has been made with deep learning methods, challenges persist in handling high-resolution images and diverse disease types. …”
-
176
Results of comparison experiments.
Published 2024“…However, traditional methods heavily rely on low-level image analysis, handcrafted features, and classical classifiers, leading to limited effectiveness and poor generalization in complex scenarios. Although significant progress has been made with deep learning methods, challenges persist in handling high-resolution images and diverse disease types. …”
-
177
Architecture of Swin Transformer Block.
Published 2024“…However, traditional methods heavily rely on low-level image analysis, handcrafted features, and classical classifiers, leading to limited effectiveness and poor generalization in complex scenarios. Although significant progress has been made with deep learning methods, challenges persist in handling high-resolution images and diverse disease types. …”
-
178
Disease distribution map of the GZDL-BD.
Published 2024“…However, traditional methods heavily rely on low-level image analysis, handcrafted features, and classical classifiers, leading to limited effectiveness and poor generalization in complex scenarios. Although significant progress has been made with deep learning methods, challenges persist in handling high-resolution images and diverse disease types. …”
-
179
Token merging module.
Published 2024“…However, traditional methods heavily rely on low-level image analysis, handcrafted features, and classical classifiers, leading to limited effectiveness and poor generalization in complex scenarios. Although significant progress has been made with deep learning methods, challenges persist in handling high-resolution images and diverse disease types. …”
-
180
Comparative results of the ablation experiments.
Published 2024“…However, traditional methods heavily rely on low-level image analysis, handcrafted features, and classical classifiers, leading to limited effectiveness and poor generalization in complex scenarios. Although significant progress has been made with deep learning methods, challenges persist in handling high-resolution images and diverse disease types. …”