Showing 6,601 - 6,620 results of 6,756 for search '(( significant changes decrease ) OR ( significant ((changes decrease) OR (largest decrease)) ))', query time: 0.51s Refine Results
  1. 6601

    Image 13_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  2. 6602

    Image 1_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  3. 6603
  4. 6604

    Image 12_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  5. 6605

    Image 11_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  6. 6606

    Image 2_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  7. 6607
  8. 6608

    Image 10_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  9. 6609

    Image 9_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  10. 6610

    Image 3_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  11. 6611

    Image 7_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  12. 6612

    Image 6_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  13. 6613

    Image 8_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  14. 6614

    Image 5_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  15. 6615
  16. 6616

    Data Sheet 1_Consistent microbial responses during the aerobic thaw of Alaskan permafrost soils.docx by Joy M. O’Brien (18927811)

    Published 2025
    “…Alpha diversity decreased with thaw across all sites, likely reflecting the increased dominance of specific thaw-responsive taxa that may be driving post-thaw biogeochemistry and increased respiration. …”
  17. 6617

    Image 4_Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids.jpeg by Dang Li (16400478)

    Published 2024
    “…An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. …”
  18. 6618

    Table1_Drought stress reduces arbuscular mycorrhizal colonization of Poncirus trifoliata (L.) roots and plant growth promotion via lipid metabolism.docx by Wei Zhang (405)

    Published 2024
    “…Results indicated that AM fungal inoculation significantly promoted the drought tolerance of P. trifoliata (L.), with the effect size decreasing along with drought severity. …”
  19. 6619

    Table2_Drought stress reduces arbuscular mycorrhizal colonization of Poncirus trifoliata (L.) roots and plant growth promotion via lipid metabolism.xlsx by Wei Zhang (405)

    Published 2024
    “…Results indicated that AM fungal inoculation significantly promoted the drought tolerance of P. trifoliata (L.), with the effect size decreasing along with drought severity. …”
  20. 6620

    DataSheet1_Drought stress reduces arbuscular mycorrhizal colonization of Poncirus trifoliata (L.) roots and plant growth promotion via lipid metabolism.docx by Wei Zhang (405)

    Published 2024
    “…Results indicated that AM fungal inoculation significantly promoted the drought tolerance of P. trifoliata (L.), with the effect size decreasing along with drought severity. …”