Showing 4,261 - 4,280 results of 21,342 for search '(( significant co decrease ) OR ( significant decrease decrease ))', query time: 0.44s Refine Results
  1. 4261

    Fitting Results for Each Operating Condition. by Puzhen An (21169189)

    Published 2025
    “…Furthermore, as the coarse particle content rises, the strata loss rate tends to decrease gradually. The final settlement curve, calculated using the method that considers changes in coarse particle content, is closer to the measured values. …”
  2. 4262

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  3. 4263

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  4. 4264

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  5. 4265

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  6. 4266
  7. 4267

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  8. 4268
  9. 4269
  10. 4270
  11. 4271
  12. 4272
  13. 4273
  14. 4274
  15. 4275
  16. 4276
  17. 4277

    Summary of results. by Xin Liu (43569)

    Published 2025
    Subjects:
  18. 4278
  19. 4279

    Mineral component content. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  20. 4280

    Micro-parameters of the numerical model. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”