Showing 1,601 - 1,620 results of 6,503 for search '(( significant concern decrease ) OR ( significant ((teer decrease) OR (we decrease)) ))', query time: 0.55s Refine Results
  1. 1601

    Vacancy Engineering Strategy Releases the Electrocatalytic Oxygen Evolution Reaction Activity of High-Entropy Oxides by Boxiong Shen (1557838)

    Published 2025
    “…The sluggish kinetics of oxygen evolution reaction (OER) poses a great challenge to the industrial promotion of electrocatalytic water splitting and zinc-air battery. Herein, we demonstrate that the kinetic limitation of the OER imposed by a conventional adsorbate evolution mechanism can be successfully overcome through activating lattice oxygen in the electrocatalyst. …”
  2. 1602

    Vacancy Engineering Strategy Releases the Electrocatalytic Oxygen Evolution Reaction Activity of High-Entropy Oxides by Boxiong Shen (1557838)

    Published 2025
    “…The sluggish kinetics of oxygen evolution reaction (OER) poses a great challenge to the industrial promotion of electrocatalytic water splitting and zinc-air battery. Herein, we demonstrate that the kinetic limitation of the OER imposed by a conventional adsorbate evolution mechanism can be successfully overcome through activating lattice oxygen in the electrocatalyst. …”
  3. 1603

    Original images for explaining Fig 4. by Reiri Takeuchi (20460788)

    Published 2024
    “…Treatment with cyclosporine A also increased <i>MYC</i> and <i>ATM</i> mRNA expression levels and decreased <i>CDK2</i>, <i>ATR</i>, <i>P27</i>, <i>P53</i> and <i>RB1</i> mRNA expression levels but not significantly. …”
  4. 1604

    Functional and strength parameters. by Susanne S. Rauh (21192252)

    Published 2025
    “…An overall tendency to an increase in FF and a decrease in functional measures were observed over 2 years. …”
  5. 1605

    Tailoring Ionic Conductivity of Polymeric Ionic Liquid Block Copolymers through Morphology Control by Samuel K. J. Adotey (22425591)

    Published 2025
    “…We further show that transport-blocking defects are largely absent from PIL-rich morphologies having nonionic cylindrical or spherical domains embedded in a PIL matrix. …”
  6. 1606

    Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity by Zuohu Zhou (14258773)

    Published 2025
    “…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
  7. 1607

    Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity by Zuohu Zhou (14258773)

    Published 2025
    “…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
  8. 1608

    Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity by Zuohu Zhou (14258773)

    Published 2025
    “…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …”
  9. 1609

    Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers by Yixiu Xu (11166860)

    Published 2024
    “…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …”
  10. 1610

    Raw data underlying the findings in this study. by Andrew Mvula (20161161)

    Published 2024
    “…The relative bone density significantly decreased as standard length and condition factor (<i>K</i>) increased in both sexes. …”
  11. 1611

    Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers by Yixiu Xu (11166860)

    Published 2024
    “…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …”
  12. 1612
  13. 1613

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  14. 1614

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  15. 1615

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  16. 1616

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  17. 1617

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  18. 1618

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  19. 1619

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
  20. 1620

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature by Yunlong Jiao (6672764)

    Published 2024
    “…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”