Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant factor » significant factors (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant factor » significant factors (Expand Search)
-
1341
Internal structure of an LSTM cell.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1342
Prediction effect of each model after STL.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1343
The kernel density plot for data of each feature.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1344
Analysis of raw data prediction results.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1345
Flowchart of the STL.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1346
SARIMA predicts season components.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1347
BWO-BiLSTM model prediction results.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1348
Bi-LSTM architecture diagram.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1349
STL Linear Combination Forecast Graph.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1350
LOSS curves for BWO-BiLSTM model training.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1351
Analysis of STL-PCA prediction results.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1352
Accumulated contribution rate of PCA.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1353
Figure of ablation experiment.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1354
Flowchart of the STL-PCA-BWO-BiLSTM model.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1355
Parameter optimization results of BiLSTM.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1356
Descriptive statistical analysis of data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1357
The MAE value of the model under raw data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1358
Three error values under raw data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1359
Decomposition of time scries plot.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1360