Showing 1 - 20 results of 47 for search '(( significant decrease decrease ) OR ( ((significant gap) OR (significant clusters)) decrease ))~', query time: 0.55s Refine Results
  1. 1

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  2. 2

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  3. 3

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  4. 4

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  5. 5

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  6. 6

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  7. 7

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  8. 8

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  9. 9

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  10. 10

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  11. 11

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  12. 12

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  13. 13

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  14. 14

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  15. 15

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  16. 16

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  17. 17
  18. 18

    Data Sheet 1_PANoptosis-related gene clusters and prognostic risk model in clear cell renal cell carcinoma.docx by Qiyue Zhao (12721537)

    Published 2025
    “…Patients were stratified into three PRG clusters and two gene clusters, which were significantly associated with ccRCC prognosis. …”
  19. 19

    Map showing the intervention and control LGAs. by Chinwe C. Eze (8787503)

    Published 2025
    “…However, post-intervention, the adjusted mean SARI Stigma Score significantly decreased in the intervention group compared to the control group, with an adjusted mean difference of 37.72 (95% CI: 36.01–39.43, p < 0.000).…”
  20. 20

    Consort diagram. by Chinwe C. Eze (8787503)

    Published 2025
    “…However, post-intervention, the adjusted mean SARI Stigma Score significantly decreased in the intervention group compared to the control group, with an adjusted mean difference of 37.72 (95% CI: 36.01–39.43, p < 0.000).…”