Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant threat » significant effect (Expand Search), significant increase (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant threat » significant effect (Expand Search), significant increase (Expand Search)
-
561
-
562
-
563
Summary of significance levels for comparison of surgical segment ROM between different test groups.
Published 2025Subjects: -
564
Analysis of the Nugent score before (T=0) and after (T=1) the use of the vaginal gel. Number of participants and respective percentages of Nugent scores before and after the intervention. A statistically significant decrease in Nugent scores was observed after the intervention (p value =0.0047).
Published 2025“…Number of participants and respective percentages of Nugent scores before and after the intervention. A statistically significant decrease in Nugent scores was observed after the intervention (p value =0.0047).…”
-
565
Descriptive statistics of alcohol consumption in G7 countries (in litres/capita).
Published 2024Subjects: -
566
-
567
-
568
-
569
-
570
-
571
-
572
-
573
Preference for the EIA – conjoint results.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
574
Marginal means – Pooled across scenarios.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
575
Sample attribute table.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
576
Subgroup analysis – Political affiliation.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
577
Sample scenario description.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
578
AMCEs – Pooled across scenarios.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
579
Methodological flowchart.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”
-
580
Preference for the EIA vs. ETA across scenarios.
Published 2025“…When are individuals more likely to support equal treatment algorithms (ETAs), characterized by higher predictive accuracy, and when do they prefer equal impact algorithms (EIAs) that reduce performance gaps between groups? A randomized conjoint experiment and a follow-up choice experiment revealed that support for the EIAs decreased sharply as their accuracy gap grew, although impact parity was prioritized more when ETAs produced large outcome discrepancies. …”