بدائل البحث:
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
-
601
-
602
-
603
-
604
-
605
-
606
-
607
Characteristics of JIA patients.
منشور في 2025"…Twelve studies published between 2003 and 2018 were analyzed, encompassing 1513 patients with a mean age of 11.4 years. Tumor necrosis factor alpha inhibitors were the predominant biologic agents used (75.8%), with a mean follow-up duration of 2 years post-biologic therapy initiation. …"
-
608
List of excluded articles.
منشور في 2025"…Twelve studies published between 2003 and 2018 were analyzed, encompassing 1513 patients with a mean age of 11.4 years. Tumor necrosis factor alpha inhibitors were the predominant biologic agents used (75.8%), with a mean follow-up duration of 2 years post-biologic therapy initiation. …"
-
609
-
610
Assessment values of machine learning models.
منشور في 2025"…The prediction results indicate that the StackBoost model excels in predicting aqueous solubility, achieving a coefficient of determination () of 0.90, a root mean square error (RMSE) of 0.29, and a mean absolute error (MAE) of 0.22, significantly outperforming the other comparative models. …"
-
611
List of datasets in AqSolDB.
منشور في 2025"…The prediction results indicate that the StackBoost model excels in predicting aqueous solubility, achieving a coefficient of determination () of 0.90, a root mean square error (RMSE) of 0.29, and a mean absolute error (MAE) of 0.22, significantly outperforming the other comparative models. …"
-
612
Feature importance derived from SHAP analysis.
منشور في 2025"…The prediction results indicate that the StackBoost model excels in predicting aqueous solubility, achieving a coefficient of determination () of 0.90, a root mean square error (RMSE) of 0.29, and a mean absolute error (MAE) of 0.22, significantly outperforming the other comparative models. …"
-
613
-
614
-
615
-
616
-
617
-
618
-
619
-
620