يعرض 3,141 - 3,160 نتائج من 21,342 نتيجة بحث عن '(( significant decrease decrease ) OR ( significance ((greatest decrease) OR (a decrease)) ))', وقت الاستعلام: 0.51s تنقيح النتائج
  1. 3141

    Flowchart of the STL. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  2. 3142

    SARIMA predicts season components. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  3. 3143

    BWO-BiLSTM model prediction results. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  4. 3144

    Bi-LSTM architecture diagram. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  5. 3145

    STL Linear Combination Forecast Graph. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  6. 3146

    LOSS curves for BWO-BiLSTM model training. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  7. 3147

    Analysis of STL-PCA prediction results. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  8. 3148

    Accumulated contribution rate of PCA. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  9. 3149

    Figure of ablation experiment. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  10. 3150

    Flowchart of the STL-PCA-BWO-BiLSTM model. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  11. 3151

    Parameter optimization results of BiLSTM. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  12. 3152

    Descriptive statistical analysis of data. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  13. 3153

    The MAE value of the model under raw data. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  14. 3154

    Three error values under raw data. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  15. 3155

    Decomposition of time scries plot. حسب Xiangjuan Liu (618000)

    منشور في 2025
    "…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
  16. 3156

    Estimated results of the mediation effect. حسب Getachew Magnar Kitila (19935139)

    منشور في 2024
    "…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …"
  17. 3157

    Panel unit root test result. حسب Getachew Magnar Kitila (19935139)

    منشور في 2024
    "…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …"
  18. 3158

    Kernel density estimation for CO2. حسب Getachew Magnar Kitila (19935139)

    منشور في 2024
    "…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …"
  19. 3159

    Change in panel quantile regression coefficients. حسب Getachew Magnar Kitila (19935139)

    منشور في 2024
    "…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …"
  20. 3160

    Definitions of variables and measurements. حسب Getachew Magnar Kitila (19935139)

    منشور في 2024
    "…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …"