Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
levels decreased » levels increased (Expand Search)
level decrease » level increased (Expand Search), teer decrease (Expand Search), level disease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
levels decreased » levels increased (Expand Search)
level decrease » level increased (Expand Search), teer decrease (Expand Search), level disease (Expand Search)
-
2901
Table 7_Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies.xlsx
Published 2025“…In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella and Paraprevotella upon antibiotic treatment. …”
-
2902
Table 9_Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies.xlsx
Published 2025“…In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella and Paraprevotella upon antibiotic treatment. …”
-
2903
Image 3_Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies.tif
Published 2025“…In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella and Paraprevotella upon antibiotic treatment. …”
-
2904
Image 1_Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies.tif
Published 2025“…In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella and Paraprevotella upon antibiotic treatment. …”
-
2905
Image 2_Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies.tif
Published 2025“…In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella and Paraprevotella upon antibiotic treatment. …”
-
2906
Image 4_Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies.tif
Published 2025“…In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella and Paraprevotella upon antibiotic treatment. …”
-
2907
-
2908
-
2909
-
2910
Regression results of the Callaway method.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2911
Regression results of crowding out effects.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2912
Article data.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2913
Overidentification test results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2914
Quantile regression results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2915
Instrumental variable regression results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2916
Other robust regression results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2917
Baseline regression results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2918
Results of propensity score matching.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2919
Parallel trend test.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
2920
Placebo test.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”