Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
test decrease » cost decreased (Expand Search), mean decrease (Expand Search), step decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
test decrease » cost decreased (Expand Search), mean decrease (Expand Search), step decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
2221
Weekly resistance training frequency over time for the DHA and placebo groups combined (n
Published 2025Subjects: -
2222
Proportions of test specimens.
Published 2025“…Finally, the intrinsic and damage mechanisms through which BF improves the mechanical properties of cement cured red sandstone soil were elucidated in conjunction with scanning electron microscopy (SEM) testing. The results of the study indicate that cement significantly enhances the water stability of red sandstone soil. …”
-
2223
-
2224
-
2225
-
2226
-
2227
-
2228
-
2229
-
2230
-
2231
-
2232
-
2233
-
2234
MXene/Bi<sub>2</sub>O<sub>3</sub> Nanocomposites as Supercapacitors for Portable Electronic Devices
Published 2025Subjects: -
2235
Homogeneity test of CR10.
Published 2025“…Post hoc analysis demonstrated significantly decreased HbO₂ in both the IMW (<i>p</i> = 0.019) and placebo (<i>p</i> = 0.035) groups relative to blank controls. …”
-
2236
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2237
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2238
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2239
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
2240
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”