Showing 2,641 - 2,660 results of 21,342 for search '(( significant decrease decrease ) OR ( significance ((we decrease) OR (greater decrease)) ))*', query time: 0.72s Refine Results
  1. 2641
  2. 2642
  3. 2643
  4. 2644
  5. 2645
  6. 2646
  7. 2647
  8. 2648
  9. 2649
  10. 2650
  11. 2651
  12. 2652

    Major hyperparameters of RF-SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  13. 2653

    Pseudo code for coupling model execution process. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  14. 2654

    Major hyperparameters of RF-MLPR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  15. 2655

    Results of RF algorithm screening factors. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  16. 2656

    Schematic diagram of the basic principles of SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  17. 2657
  18. 2658
  19. 2659
  20. 2660