Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
1461
Measurements of the amount of ATP released by bladder distention and VNUT expression in the bladder.
Published 2024Subjects: -
1462
-
1463
-
1464
-
1465
-
1466
-
1467
-
1468
-
1469
-
1470
Upper-crust thermal evolution of the Patagonian Precordillera basement (Argentina): insights from fission track, (U-Th)/He thermochronology and geodynamic significance
Published 2025“…Most thermal models show similar decreasing time-temperature paths (t-T), from which three stages are distinguished. …”
-
1471
-
1472
-
1473
-
1474
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1475
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1476
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1477
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1478
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1479
-
1480