Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significance test » significance set (Expand Search), significance testing (Expand Search), significance level (Expand Search)
test decrease » teer decrease (Expand Search), cost decreased (Expand Search), mean decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significance test » significance set (Expand Search), significance testing (Expand Search), significance level (Expand Search)
test decrease » teer decrease (Expand Search), cost decreased (Expand Search), mean decrease (Expand Search)
-
761
-
762
-
763
The effect of pre-RT D-dimer levels on post-RT changes in D-dimer levels and on survival rates.
Published 2025Subjects: -
764
-
765
-
766
-
767
Kaplan Meier curves of OS and PFS according to different pre-RT different D-dimer values.
Published 2025Subjects: -
768
-
769
-
770
-
771
-
772
-
773
-
774
-
775
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. This hypothesis was tested by introducing flexible prototypical phosphenium cations, resulting in an ∼8 kcal/mol decrease in the activation energy for H<sub>2</sub> splitting. …”
-
776
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. This hypothesis was tested by introducing flexible prototypical phosphenium cations, resulting in an ∼8 kcal/mol decrease in the activation energy for H<sub>2</sub> splitting. …”
-
777
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. This hypothesis was tested by introducing flexible prototypical phosphenium cations, resulting in an ∼8 kcal/mol decrease in the activation energy for H<sub>2</sub> splitting. …”
-
778
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. This hypothesis was tested by introducing flexible prototypical phosphenium cations, resulting in an ∼8 kcal/mol decrease in the activation energy for H<sub>2</sub> splitting. …”
-
779
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. This hypothesis was tested by introducing flexible prototypical phosphenium cations, resulting in an ∼8 kcal/mol decrease in the activation energy for H<sub>2</sub> splitting. …”
-
780
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…In contrast, an in-depth examination of the H<sub>2</sub> activation pathway by <b>1</b><sup><b>+</b></sup> suggests that inducing ligand flexibility facilitates access to a reactive state through rehybridization at the phosphorus center. This hypothesis was tested by introducing flexible prototypical phosphenium cations, resulting in an ∼8 kcal/mol decrease in the activation energy for H<sub>2</sub> splitting. …”