Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significance we » significance set (Expand Search), significance _ (Expand Search), significance b (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significance we » significance set (Expand Search), significance _ (Expand Search), significance b (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
921
Structural Diagrams of RF Model and ResNet Model.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
922
PCA-CGAN model convergence curve.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
923
PCA-CGAN Structure Diagram.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
924
Comparison of Model Five-classification Results.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
925
PCAECG-GAN K-fold experiment table.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
926
PCA-CGAN Pseudocode Table.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
927
PCA-CGAN Ablation Experiment Results.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
928
Diagnostic criteria for Alcoholic cardiomyopathy.
Published 2025“…</p><p><b>Results:</b> Globally, ACM burden showed significant declines from 1990 to 2021, with age-standardized rates decreasing by 22.5-37.1% across prevalence, mortality and disability measures. …”
-
929
PCAIs inhibit NCI-H23 cell line viability.
Published 2024“…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
-
930
PCAIs disrupt actin filaments in NCI-H23 cells.
Published 2024“…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
-
931
PCAIs suppress 3D NCI-H23 cell invasion.
Published 2024“…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
-
932
PCAIs suppress NCI-H23 cancer cell migration.
Published 2024“…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
-
933
PCAIs induce apoptosis in NCI-H23 cells.
Published 2024“…However, CRAF/RAF1 phosphorylation decreased by 40%, suggesting significant changes in the KRAS/MAPK signaling patterns. …”
-
934
Results of normal and wide step width (cm).
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
935
Raw data 16–20.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
936
Demographics, SD= Standard Deviation.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
937
Raw data 6–9 and 15.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
938
Raw data 1–5.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
939
Raw data 10–14.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”
-
940
Coordination angle during running.
Published 2025“…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …”